Direct Presynaptic Regulation of GABA/Glycine Release by Kainate Receptors in the Dorsal Horn An Ionotropic Mechanism
نویسندگان
چکیده
In the spinal cord dorsal horn, excitatory sensory fibers terminate adjacent to interneuron terminals. Here, we show that kainate (KA) receptor activation triggered action potential-independent release of GABA and glycine from dorsal horn interneurons. This release was transient, because KA receptors desensitized, and it required Na+ entry and Ca2+ channel activation. KA modulated evoked inhibitory transmission in a dose-dependent, biphasic manner, with suppression being more prominent. In recordings from isolated neuron pairs, this suppression required GABA(B) receptor activation, suggesting that KA-triggered GABA release activated presynaptic GABA(B) autoreceptors. Finally, glutamate released from sensory fibers caused a KA and GABA(B) receptor-dependent suppression of inhibitory transmission in spinal slices. Thus, we show how presynaptic KA receptors are linked to changes in GABA/glycine release and highlight a novel role for these receptors in regulating sensory transmission.
منابع مشابه
Role of Presynaptic Glutamate Receptors in Pain Transmission at the Spinal Cord Level
Nociceptive primary afferents release glutamate, activating postsynaptic glutamate receptors on spinal cord dorsal horn neurons. Glutamate receptors, both ionotropic and metabotropic, are also expressed on presynaptic terminals, where they regulate neurotransmitter release. During the last two decades, a wide number of studies have characterized the properties of presynaptic glutamatergic recep...
متن کاملPropofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats
Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...
متن کاملGlutamate and GABA A Painful Combination
Regulation of release of inhibitory neurotransmitter is a key element of plasticity in dorsal horn function. In this issue of Neuron, Kerchner et al. report that neurotransmitter release from inhibitory dorsal horn neurons is affected by activation of presynaptic kainate-type glutamate receptors.
متن کاملIonotropic receptors at hippocampal mossy fibers: roles in axonal excitability, synaptic transmission, and plasticity
Dentate granule cells process information from the enthorinal cortex en route to the hippocampus proper. These neurons have a very negative resting membrane potential and are relatively silent in the slice preparation. They are also subject to strong feed-forward inhibition. Their unmyelinated axon or mossy fiber ramifies extensively in the hilus and projects to stratum lucidum where it makes g...
متن کاملChanges in mIPSCs and sIPSCs after kainate treatment: possible actions mediated by the direct activation of kainate receptors.
Changes in mIPSCs and sIPSCs after kainate treatment: possible actions mediated by the direct activation of kainate receptors To the Editor: In a very interesting paper, Shao and Dudek (2005) described the changes in miniature inhibitory postsyn-aptic currents (mIPSCs) and spontaneous inhibitory synaptic currents (sIPSCs) that occur after kainate treatment recorded in hippocampal dentate granul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 32 شماره
صفحات -
تاریخ انتشار 2001